IOP Publishing
erl475802f3_online.jpg (191.82 kB)

The simulated NEE flux (kg C m−2 yr−1) (uptake: negative; release: positive)

Download (0 kB)
posted on 2013-08-29, 00:00 authored by Wenxin Zhang, Paul A Miller, Benjamin Smith, Rita Wania, Torben Koenigk, Ralf Döscher

Figure 3. The simulated NEE flux (kg C m−2 yr−1) (uptake: negative; release: positive). (a) The inter-annual variations of the NEE flux (above) and the 2 m air temperature (below) in the CRU-forced run and the RCAO-forced run. (b) The change of the NEE flux between the recent and the future periods in the RCAO-forced run. Note: 1 kg C m−2 corresponds to 17.9 Gt C in this domain.


One major challenge to the improvement of regional climate scenarios for the northern high latitudes is to understand land surface feedbacks associated with vegetation shifts and ecosystem biogeochemical cycling. We employed a customized, Arctic version of the individual-based dynamic vegetation model LPJ-GUESS to simulate the dynamics of upland and wetland ecosystems under a regional climate model–downscaled future climate projection for the Arctic and Subarctic. The simulated vegetation distribution (1961–1990) agreed well with a composite map of actual arctic vegetation. In the future (2051–2080), a poleward advance of the forest–tundra boundary, an expansion of tall shrub tundra, and a dominance shift from deciduous to evergreen boreal conifer forest over northern Eurasia were simulated. Ecosystems continued to sink carbon for the next few decades, although the size of these sinks diminished by the late 21st century. Hot spots of increased CH4 emission were identified in the peatlands near Hudson Bay and western Siberia. In terms of their net impact on regional climate forcing, positive feedbacks associated with the negative effects of tree-line, shrub cover and forest phenology changes on snow-season albedo, as well as the larger sources of CH4, may potentially dominate over negative feedbacks due to increased carbon sequestration and increased latent heat flux.