The critical coupling constant Gc (in units of ωy) as a function of the chemical potential μ for the spherical γ = 1 case (upper panel) and deformed cases with the frequency ratios γ = 2 (middle panel) and γ = 1.57 (lower panel)
Figure 6. The critical coupling constant Gc (in units of ωy) as a function of the chemical potential μ for the spherical γ = 1 case (upper panel) and deformed cases with the frequency ratios γ = 2 (middle panel) and γ = 1.57 (lower panel). The smearing parameter δ and the dimensionless Rashba coupling parameter β are given in the panels. The notation in the legend indicates that G_\Sigma is obtained by doing summation over levels, while G0.5 and G1 indicate that we have used smeared distribution with δ = 0.5 and δ = 1 respectively. Here we set ω = ωy.
Abstract
We consider a spin–orbit coupled system of particles in an external trap that is represented by a deformed harmonic oscillator potential. The spin–orbit interaction is a Rashba interaction that does not commute with the trapping potential and requires a full numerical treatment in order to obtain the spectrum. The effect of a Zeeman term is also considered. Our results demonstrate that variable spectral gaps occur as a function of strength of the Rashba interaction and deformation of the harmonic trapping potential. The single-particle density of states and the critical strength for superfluidity vary tremendously with the interaction parameter. The strong variations with Rashba coupling and deformation imply that the few- and many-body physics of spin–orbit coupled systems can be manipulated by variation of these parameters.