IOP Publishing
Browse

Interacting phase diagram at α = 1/6 as a function of interaction U and staggering λx for various values of spin-mixing γ

Download (0 kB)
figure
posted on 2013-06-24, 00:00 authored by Peter P Orth, Daniel Cocks, Stephan Rachel, Michael Buchhold, Karyn Le Hur, Walter Hofstetter

Figure 4. Interacting phase diagram at α = 1/6 as a function of interaction U and staggering λx for various values of spin-mixing γ. We find the (semi)-metallic regime (Metal), magnetically ordered state (Mag), NI and QSH state.

Abstract

Motivated by the recent progress in engineering artificial non-Abelian gauge fields for ultracold fermions in optical lattices, we investigate the time-reversal-invariant Hofstadter–Hubbard model. We include an additional staggered lattice potential and an artificial Rashba-type spin–orbit coupling term available in experiment. Without interactions, the system can be either a (semi)-metal, a normal or a topological insulator, and we present the non-Abelian generalization of the Hofstadter butterfly. Using a combination of real-space dynamical mean-field theory (RDMFT), analytical arguments, and Monte-Carlo simulations we study the effect of strong on-site interactions. We determine the interacting phase diagram, and discuss a scenario of an interaction-induced transition from a normal to a topological insulator. At half-filling and large interactions, the system is described by a quantum spin Hamiltonian, which exhibits exotic magnetic order due to the interplay of Rashba-type spin–orbit coupling and the artificial time-reversal-invariant magnetic field term. We determine the magnetic phase diagram: both for the itinerant model using RDMFT and for the corresponding spin model in the classical limit using Monte-Carlo simulations.

History

Usage metrics

    IOP Publishing

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC