IOP Publishing
Browse
erl473691f5_online.jpg (473.15 kB)

The thunderstorm cloud top height reaches up to ~12–13 km as inferred from lidar measurements on board the CALIPSO spacecraft

Download (0 kB)
figure
posted on 2013-08-13, 00:00 authored by Martin Füllekrug, Ferruccio Zanotti, William Rison, Michel Parrot, Alec Bennett, József Bór, Thomas Farges, Ondrej Santolik, Ivana Kolmasova, Enrico Arnone

Figure 5. The thunderstorm cloud top height reaches up to ~12–13 km as inferred from lidar measurements on board the CALIPSO spacecraft. Above the maximum cloud top height, an ensemble of stratospheric ice particles occurs at ~13–14 km around the tropopause as inferred from temperature measurements during a preceding radiosonde ascent (inset figure). The mixed phase region of the thundercloud is found at ~6–7 km height where ice and water coexist. The convective storm might have entrained dust which is confined to a layer from the ground up to ~5–6 km.

Abstract

The acceleration of electrons results in observable electromagnetic waves which can be used for remote sensing. Here, we make use of ~4 Hz–66 MHz radio waves emitted by two consecutive intense positive lightning discharges to investigate their impact on the atmosphere above a thundercloud. It is found that the first positive lightning discharge initiates a sprite where electrons are accelerated during the exponential growth and branching of the sprite streamers. This preconditioned plasma above the thundercloud is subsequently exposed to a second positive lightning discharge associated with a bouncing-wave discharge. This discharge process causes a re-brightening of the existing sprite streamers above the thundercloud and initiates a subsequent relativistic electron beam.

History

Usage metrics

    Environmental Research Letters

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC