Population of atomic states |00〉23, |EPR〉23, and |rr23 versus dimensionless rescaled time Ω0rt with Rydberg interaction strength

Figure 3. Population of atomic states |00〉23, |EPR〉23, and |rr23 versus dimensionless rescaled time Ω0rt with Rydberg interaction strength. (a) Δr0r = 0, (b)Δr0r = 1, (c)Δr0r = 5 and (d)Δr0r = 10. The initial state is |00〉23. The effect of spontaneous emission from the Rydberg state is neglected here. The Rydberg interaction strength varies the time evolution of the two-atom system. Without interaction the system displays a perfect sinusoidal oscillation, see (a). The gradually enhanced interaction strength hinders the atoms from double excitation. The population PEPR of the maximally entangled state |EPR〉23 can exceed 0.95 for Δr0r = 10. As Ω0rt grows, the peak value of PEPR (indicated by purple arrows) can be higher than other peaks without considering spontaneous emission.

Abstract

Neutral atoms excited to Rydberg states can interact with each other via dipole–dipole interaction, which results in a physical phenomenon called the Rydberg blockade mechanism. The effect attracts much attention due to its potential applications in quantum computation and quantum simulation. Quantum teleportation has been the core protocol in quantum information science playing a key role in efficient long-distance quantum communication. Here, we first propose the implementation of a teleportation scheme with neutral atoms via Rydberg blockade, in which the entangled states of qubits can readily be prepared and the Bell state measurements just require single qubit operations without precise control of Rydberg interaction. The rapid experimental progress of coherent control of Rydberg excitation, optical trapping techniques and state-selective atomic detection promise the application of the teleportation scheme for scalable quantum computation and many-body quantum simulation using the protocol proposed by Gottesman and Chuang (1999 Nature 402 390) with Rydberg atoms in an optical lattice.