IOP Publishing
Browse
erl469176f2_online.jpg (148.32 kB)

Fractional change in the total saturated area (poleward of 45° N and excluding glacier) with respect to 2010 (around 8.1×1011 m2) under various climate projections

Download (0 kB)
figure
posted on 2013-07-10, 00:00 authored by Xiang Gao, C Adam Schlosser, Andrei Sokolov, Katey Walter Anthony, Qianlai Zhuang, David Kicklighter

Figure 2. Fractional change in the total saturated area (poleward of 45° N and excluding glacier) with respect to 2010 (around 8.1×1011 m2) under various climate projections.

Abstract

Climate change and permafrost thaw have been suggested to increase high latitude methane emissions that could potentially represent a strong feedback to the climate system. Using an integrated earth-system model framework, we examine the degradation of near-surface permafrost, temporal dynamics of inundation (lakes and wetlands) induced by hydro-climatic change, subsequent methane emission, and potential climate feedback. We find that increases in atmospheric CH4 and its radiative forcing, which result from the thawed, inundated emission sources, are small, particularly when weighed against human emissions. The additional warming, across the range of climate policy and uncertainties in the climate-system response, would be no greater than 0.1 ° C by 2100. Further, for this temperature feedback to be doubled (to approximately 0.2 ° C) by 2100, at least a 25-fold increase in the methane emission that results from the estimated permafrost degradation would be required. Overall, this biogeochemical global climate-warming feedback is relatively small whether or not humans choose to constrain global emissions.

History

Usage metrics

    Environmental Research Letters

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC