IOP Publishing
Browse
Table1.xls (5.5 kB)

Excitation energies of levels in the 3d94s configuration for W46+ from different theoretical approaches compared to experiment and other calculations

Download (0 kB)
dataset
posted on 2013-06-21, 00:00 authored by Weijie Du, Martin Andersson, Ke Yao, Tomas Brage, Roger Hutton, Yaming Zou

Table 1. Excitation energies of levels in the 3d94s configuration for W46+ from different theoretical approaches compared to experiment and other calculations.

Abstract

Based on the multi-configuration Dirac–Hartree–Fock method and using the GRASPVU package, a theoretical investigation was performed to study the lifetimes of hyperfine levels of the first excited level 3d94s 3D3 in Ni-like ions (Z = 72–79) for all stable isotopes with nuclear spin. Comparisons between hyperfine-induced electric quadrupole transition rates and the pure magnetic octupole transition rates show that the extra electric quadrupole transition channel caused by the nuclear magnetic dipole and electric quadrupole hyperfine interaction is important for most hyperfine levels in each individual ion. Lifetimes of most hyperfine levels are sensitive to this extra decay channel. Extreme cases are found in 181Ta, 185Re and 187Re, where lifetimes of some hyperfine levels are shortened by more than an order of magnitude.

History