Each colour illustrates the quasi-Poincaré maps in the (a) XVX plane and the (b) ZVZ plane for most types of trajectories that take place within a single light lobe found in the simulations

Figure 5. Each colour illustrates the quasi-Poincaré maps in the (a) XVX plane and the (b) ZVZ plane for most types of trajectories that take place within a single light lobe found in the simulations. They result from the values of the x and vx variables and z and vz variables respectively when the atoms' trajectories intersect the y = 0 plane.

Abstract

We characterize the semiclassical dynamics of dilute thermal atom clouds located in three-dimensional optical lattices generated by stationary optical Bessel beams. The dynamics of the cold atoms is explored in the quasi-Hamiltonian regime that arises using laser beams with far-off resonance detuning. Although the transverse structure of Bessel beams exhibits a complex topological structure, it is found that the longitudinal motion along the main propagation axis of the beam is the detonator of a high sensitivity of the atoms' motion to the initial conditions. This effect would not be properly described by bidimensional models. We show that an experimental implementation can be highly simplified by an analysis of the behaviour of the dynamical system under scale transformations. Experimentally feasible signatures of the chaotic dynamics of the atom clouds are also identified.