Relative transition strengths from the ground-state magnetic sublevels to the excited-state magnetic sublevels when the linearly polarized exciting radiation is decomposed into σ<sup>±</sup> circularly polarized components for the F_g=2longrightarrow F_e=3 transition of the <em>D</em><sub>2</sub> line Marcis Auzinsh Andris Berzins Ruvin Ferber Florian Gahbauer Linards Kalvans Arturs Mozers 10.6084/m9.figshare.1012710.v1 https://iop.figshare.com/articles/figure/_Relative_transition_strengths_from_the_ground_state_magnetic_sublevels_to_the_excited_state_magneti/1012710 <p><strong>Figure 2.</strong> Relative transition strengths from the ground-state magnetic sublevels to the excited-state magnetic sublevels when the linearly polarized exciting radiation is decomposed into σ<sup>±</sup> circularly polarized components for the F_g=2\longrightarrow F_e=3 transition of the <em>D</em><sub>2</sub> line. The Lande factor <em>g<sub>F</sub></em> is given at the left of each particular hyperfine level.</p> <p><strong>Abstract</strong></p> <p>We present the results of an investigation of the different physical processes that influence the shape of nonlinear magneto-optical signals both at small magnetic field values (~100 mG) and at large magnetic field values (several tens of Gauss). We used a theoretical model that provided an accurate description of experimental signals for a wide range of experimental parameters. By turning various effects 'on' or 'off' inside this model, we investigated the origin of different features of the measured signals. We confirmed that the narrowest structures, with widths of the order of 100 mG, are related mostly to coherences among ground-state magnetic sublevels. The shape of the curves at other scales could be explained by taking into account the different velocity groups of atoms that come into and out of resonance with the exciting laser field. Coherent effects in the excited state can also play a role, although they mostly affect the polarization components of the fluorescence. The results of theoretical calculations are compared with experimental measurements of laser-induced fluorescence from the <em>D</em><sub>2</sub> line of atomic rubidium as a function of the magnetic field.</p> 2013-09-05 00:00:00 100 mG D 2 line velocity groups sublevel fluorescence model Coherent effects laser field polarization components transition strengths field values Lande factor gF signal Atomic Physics Molecular Physics