10.6084/m9.figshare.1012061.v1 O V Marchukov O V Marchukov A G Volosniev A G Volosniev D V Fedorov D V Fedorov A S Jensen A S Jensen N T Zinner N T Zinner Energy as a function of dimensionless spin–orbit coupling parameter β for the case where the oscillator potential is deformed IOP Publishing 2013 function strength parameter deformation variation Rashba interaction panel oscillator Atomic Physics Molecular Physics 2013-06-24 00:00:00 Figure https://iop.figshare.com/articles/figure/_Energy_as_a_function_of_dimensionless_spin_orbit_coupling_parameter_for_the_case_where_the_oscillat/1012061 <p><strong>Figure 2.</strong> Energy as a function of dimensionless spin–orbit coupling parameter β for the case where the oscillator potential is deformed. The left panel has \gamma =\frac{\omega _x}{\omega _y} = 2 and the right panel has γ = 3.</p> <p><strong>Abstract</strong></p> <p>We consider a spin–orbit coupled system of particles in an external trap that is represented by a deformed harmonic oscillator potential. The spin–orbit interaction is a Rashba interaction that does not commute with the trapping potential and requires a full numerical treatment in order to obtain the spectrum. The effect of a Zeeman term is also considered. Our results demonstrate that variable spectral gaps occur as a function of strength of the Rashba interaction and deformation of the harmonic trapping potential. The single-particle density of states and the critical strength for superfluidity vary tremendously with the interaction parameter. The strong variations with Rashba coupling and deformation imply that the few- and many-body physics of spin–orbit coupled systems can be manipulated by variation of these parameters.</p>