Geographical parameters of the sampling sites on Aldegondabreen Jakub D Zarsky Marek Stibal Andy Hodson Birgit Sattler Morten Schostag Lars H Hansen Carsten S Jacobsen Roland Psenner 10.6084/m9.figshare.1011899.v1 https://iop.figshare.com/articles/dataset/___Geographical_parameters_of_the_sampling_sites_on_Aldegondabreen/1011899 <p><b>Table 2.</b>  Geographical parameters of the sampling sites on Aldegondabreen. </p> <p><strong>Abstract</strong></p> <p>The aggregation of surface debris particles on melting glaciers into larger units (cryoconite) provides microenvironments for various microorganisms and metabolic processes. Here we investigate the microbial community on the surface of Aldegondabreen, a valley glacier in Svalbard which is supplied with carbon and nutrients from different sources across its surface, including colonies of seabirds. We used a combination of geochemical analysis (of surface debris, ice and meltwater), quantitative polymerase chain reactions (targeting the 16S ribosomal ribonucleic acid and <em>amoA</em> genes), pyrosequencing and multivariate statistical analysis to suggest possible factors driving the ecology of prokaryotic microbes on the surface of Aldegondabreen and their potential role in nitrogen cycling. The combination of high nutrient input with subsidy from the bird colonies, supraglacial meltwater flow and the presence of fine, clay-like particles supports the formation of centimetre-scale cryoconite aggregates in some areas of the glacier surface. We show that a diverse microbial community is present, dominated by the cyanobacteria, Proteobacteria, Bacteroidetes, and Actinobacteria, that are well-known in supraglacial environments. Importantly, ammonia-oxidizing archaea were detected in the aggregates for the first time on an Arctic glacier.</p> 2013-09-11 00:00:00 Arctic glacier nitrogen cycling supraglacial environments prokaryotic microbes valley glacier surface debris geochemical analysis glacier surface bird colonies aldegondabreen polymerase chain reactions surface debris particles sampling sites supraglacial meltwater flow 16 S Environmental Science