10.6084/m9.figshare.1011536.v1
Dim Coumou
Alexander Robinson
Multi-model mean of the percentage of boreal summer months in the time period 2071–2099 with temperatures beyond 3-sigma (top) and 5-sigma (bottom) under RCP2.6 (left) and RCP8.5 (right)
2013
IOP Publishing
Abstract Climatic warming
Unmitigated climate change causes
sigma
rcp
Model Intercomparison Project
function
21 st century
heat extremes
climate models
cmip
boreal summer months
2013-08-14 00:00:00
article
https://iop.figshare.com/articles/_Multi_model_mean_of_the_percentage_of_boreal_summer_months_in_the_time_period_2071_2099_with_temper/1011536
<p><strong>Figure 3.</strong> Multi-model mean of the percentage of boreal summer months in the time period 2071–2099 with temperatures beyond 3-sigma (top) and 5-sigma (bottom) under RCP2.6 (left) and RCP8.5 (right).</p> <p><strong>Abstract</strong></p> <p>Climatic warming of about 0.5 ° C in the global mean since the 1970s has strongly increased the occurrence-probability of heat extremes on monthly to seasonal time scales. For the 21st century, climate models predict more substantial warming. Here we show that the multi-model mean of the CMIP5 (Coupled Model Intercomparison Project) climate models accurately reproduces the evolution over time and spatial patterns of the historically observed increase in monthly heat extremes. For the near-term (i.e., by 2040), the models predict a robust, several-fold increase in the frequency of such heat extremes, irrespective of the emission scenario. However, mitigation can strongly reduce the number of heat extremes by the second half of the 21st century. Unmitigated climate change causes most (>50%) continental regions to move to a new climatic regime with the coldest summer months by the end of the century substantially hotter than the hottest experienced today. We show that the land fraction experiencing extreme heat as a function of global mean temperature follows a simple cumulative distribution function, which depends only on natural variability and the level of spatial heterogeneity in the warming.</p>