10.6084/m9.figshare.1011476.v1 Marco Tedesco Marco Tedesco Ian C Willis Ian C Willis Matthew J Hoffman Matthew J Hoffman Alison F Banwell Alison F Banwell Patrick Alexander Patrick Alexander Neil S Arnold Neil S Arnold Dynamic response of the GPS receivers associated with the two lake drainage events IOP Publishing 2013 Lake Half Moon gps Greenland ice sheet ice dynamics lake drainage events Abstract Supraglacial lake drainage increases ice flow velocities Environmental Science 2013-07-16 00:00:00 Figure https://iop.figshare.com/articles/figure/_Dynamic_response_of_the_GPS_receivers_associated_with_the_two_lake_drainage_events/1011476 <p><strong>Figure 3.</strong> Dynamic response of the GPS receivers associated with the two lake drainage events. ((a), (b)) Elevation (dashed lines) and horizontal speed (continuous lines) for the five receivers for two periods including the drainage of Lake Half Moon (a) and Lake Ponting (b). For convenience, the time series of the lake depth recorded by the pressure sensors are also reported. Blue shaded areas indicate the period when the drainage was recorded by the sensors in the lakes.</p> <p><strong>Abstract</strong></p> <p>Supraglacial lake drainage on the Greenland ice sheet opens surface-to-bed connections, reduces basal friction, and temporarily increases ice flow velocities by up to an order of magnitude. Existing field-based observations of lake drainages and their impact on ice dynamics are limited, and focus on one specific draining mechanism. Here, we report and analyse global positioning system measurements of ice velocity and elevation made at five locations surrounding two lakes that drained by different mechanisms and produced different dynamic responses. For the lake that drained slowly (>24 h) by overtopping its basin, delivering water via a channel to a pre-existing moulin, speedup and uplift were less than half those associated with a lake that drained rapidly (~2 h) through hydrofracturing and the creation of new moulins in the lake bottom. Our results suggest that the mode and associated rate of lake drainage govern the impact on ice dynamics.</p>